Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(9): 3816-3828, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37845494

RESUMO

Maternal care is critical for epigenetic programming during postnatal brain development. Stress is recognized as a critical factor that may affect maternal behavior, yet owing to high heterogeneity in stress response, its impact varies among individuals. We aimed here to understand the connection between inborn stress vulnerability, maternal care, and early epigenetic programming using mouse populations that exhibit opposite poles of the behavioral spectrum (social dominance [Dom] and submissiveness [Sub]) and differential response to stress. In contrast to stress-resilient Dom dams, stress-vulnerable Sub dams exhibit significantly lower maternal attachment, serum oxytocin, and colonic Lactobacillus reuteri populations. Sub offspring showed a reduced hippocampal expression of key methylation genes at postnatal day (PND) 7 and a lack of developmentally-dependent increase in 5-methylcytosine (5-mC) at PND 21. In addition, Sub pups exhibit significant hypermethylation of gene promoters connected with glutamatergic synapses and behavioral responses. We were able to reverse the submissive endophenotype through cross-fostering Sub pups with Dom dams (Sub/D). Thus, Sub/D pups exhibited elevated hippocampal expression of DNMT3A at PND 7 and increased 5-mC levels at PND 21. Furthermore, adult Sub/D offspring exhibited increased sociability, social dominance, and hippocampal glutamate and monoamine levels resembling the neurochemical profile of Dom mice. We postulate that maternal inborn stress vulnerability governs epigenetic patterning sculpted by maternal care and intestinal microbiome diversity during early developmental stages and shapes the array of gene expression patterns that may dictate neuronal architecture with a long-lasting impact on stress sensitivity and the social behavior of offspring.


Assuntos
Mães , Comportamento Social , Humanos , Feminino , Animais , Camundongos , Hipocampo/metabolismo , Comportamento Materno/fisiologia , Predomínio Social
2.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445911

RESUMO

The role of hippocampal monoamines and their related genes in the etiology and pathogenesis of depression-like behavior, particularly in impaired sociability traits and the meaning of changes in USVs emitted by pups, remains unknown. We assessed the effects of prenatal administration of S-adenosyl-methionine (SAMe) in Sub mice that exhibit depressive-like behavior on serotonergic, dopaminergic and noradrenergic metabolism and the activity of related genes in the hippocampus (HPC) in adulthood in comparison to saline-treated control Sub mice. During postnatal days 4 and 8, we recorded and analyzed the stress-induced USVs emitted by the pups and tried to understand how the changes in the USVs' calls may be related to the changes in the monoamines and the activity of related genes. The recordings of the USVs showed that SAMe induced a reduction in the emitted flat and one-frequency step-up call numbers in PND4 pups, whereas step-down type calls were significantly increased by SAMe in PND8 pups. The reduction in the number of calls induced by SAMe following separation from the mothers implies a reduction in anxiety, which is an additional sign of decreased depressive-like behavior. Prenatal SAMe increased the concentrations of serotonin in the HPC in both male and female mice without any change in the levels of 5HIAA. It also decreased the level of the dopamine metabolite DOPAC in females. There were no changes in the levels of norepinephrine and metabolites. Several changes in the expression of genes associated with monoamine metabolism were also induced by prenatal SAMe. The molecular and biochemical data obtained from the HPC studies are generally in accordance with our previously obtained data from the prefrontal cortex of similarly treated Sub mice on postnatal day 90. The changes in both monoamines and their gene expression observed 2-3 months after SAMe treatment are associated with the previously recorded behavioral improvement and seem to demonstrate that SAMe is effective via an epigenetic mechanism.


Assuntos
Depressão , Hierarquia Social , Gravidez , Camundongos , Animais , Feminino , Masculino , Depressão/genética , Vocalização Animal , Hipocampo/metabolismo , Dopamina/metabolismo , Norepinefrina/metabolismo , S-Adenosilmetionina/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233200

RESUMO

Reduction in the levels of monoamines, such as serotonin and dopamine in the brain, were reported in patients and animals with depression. SAMe, a universal methyl donor and an epigenetic modulator, is successfully used as an adjunct treatment of depression. We previously found that prenatal treatment with SAMe of Submissive (Sub) mice that serve as a model for depression alleviated many of the behavioral depressive symptoms. In the present study, we treated pregnant Sub mice with 20 mg/kg of SAMe on days 12-15 of gestation and studied the levels of monoamines and the expression of genes related to monoamines metabolism in their prefrontal cortex (PFC) at the age of 3 months. The data were compared to normal saline-treated Sub mice that exhibit depressive-like symptoms. SAMe increased the levels of serotonin in the PFC of female Sub mice but not in males. The levels of 5-HIAA were not changed. SAMe increased the levels of dopamine and of DOPAC in males and females but increased the levels of HVA only in females. The levels of norepinephrine and its metabolite MHPG were unchanged. SAMe treatment changed the expression of several genes involved in the metabolism of these monoamines, also in a sex-related manner. The increase in several monoamines induced by SAMe in the PFC may explain the alleviation of depressive-like symptoms. Moreover, these changes in gene expression more than 3 months after treatment probably reflect the beneficial effects of SAMe as an epigenetic modulator in the treatment of depression.


Assuntos
Dopamina , Serotonina , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Animais , Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Catecolaminas/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Dopamina/metabolismo , Epigênese Genética , Feminino , Hierarquia Social , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Metoxi-Hidroxifenilglicol , Camundongos , Norepinefrina/metabolismo , Solução Salina , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...